報(bào)告人:劉輝(曲阜師范大學(xué))
主持人:張曉穎
時(shí) 間:2023.7.9 10:00-11:00
地 點(diǎn):國(guó)盛大酒店福運(yùn)廳
主辦單位:長(zhǎng)春大學(xué)理學(xué)院
報(bào)告人簡(jiǎn)介:First, existence and uniqueness of a global solution of the three-dimensional Boussinesq-MHD equations with partial viscosity and damping are proved for. Second, we prove that there is a unique global smooth solution of the 3D generalized MHD-Boussinesq equations with temperature-dependent thermal diffusivity in the Sobolev class for any s>2. Third, global smooth solution of the three-dimensional generalized tropical climate model with partial viscosity and damping is proved in (s>2) for/2and. Finally, using the unique ergodicity and the uniform large deviations results, we prove the large deviations of invariant measure by verifying the Freidlin-Wentzell large deviations upper and lower bounds.
觀點(diǎn)綜述:博士研究生,青年教授,碩士研究生導(dǎo)師,主要研究方向?yàn)殡S機(jī)流體方程,無(wú)窮維隨機(jī)動(dòng)力系統(tǒng)和流體方程。目前主持國(guó)家自然科學(xué)基金面上項(xiàng)目一項(xiàng),主持完成國(guó)家,省部級(jí)項(xiàng)目四項(xiàng)。近年來(lái)在J. Differential Equations、Commun. Math. Sci,Z. Angew. Math. Phys.等SCI期刊上發(fā)表論文近40篇。